導入事例インタビュー

従業員 : 23名(技術者4名、オペレーター7名、作業員10名、 事務1名、営業1名)

保有重機: 0.7BH、0.25BH、0.1BH、0.15BH(ZX35 パットブレード) 3DMC.4t コンバインドローラー

有限会社 津軽興業 様 (千葉県)

iDigは簡単に取り扱えますか?一最初のうち、高さだけやればいいならそんなに難しい操作じゃない。スマートフォンいじれれば全然操作できるよ。

現場でiDigをどのように活用していますか? 一掘削した深さを測るのに、オートレベルを使用したり、勾配ついてると面倒だけど、iDigではそれが不要。最初に勾配設定しておけば楽に掘削できる。

また、水が出てしまうような現場では、手元作業員がウロウロして下がぐじゃぐじゃになってしまう。iDigでは手元いらずで1・2cmの精度で掘れるから、キレイに掘れるよね。

昔はよく降りて、測ったり、法面整形、勾配上下など、自分でしてると機械の1日の稼働率が相当少なくなってしまう。それに比べたら、今は本当に機械から降りなくなったね。

元請け様の反応-1年近く同じ現場で使ってるから、もう言わなくてもiDig用に丁張してくれる。丁張といっても、基本トンボで水糸張るだけ。 結構気に入ってるよ、みんな。 どこの元請けさんも気に入ってる。

従業員の反応-若手が高さの確認に3・4人使っている。 他の現場でもつけて持って行ってる。乗ってればどんどん 覚えていくから、みんなで覚えていけば全然強みだよね。

NETISや費用対効果-NETISはA(現在はVR)だから使えるよね。回収は、もう2台分はできてるんじゃないかな。 100人削減したら単純計算でx2万円=200万。フルで使ってるからね。

オフセット機能ー今は主流で使ってる。法の角切る時に、便利だよね。管路掘削やってる人にいいと思うよ。

熟練オペレーターについて一腕があるから必要ないという人も、つけたらもっと出来るようになると思う。まず丁張が簡単で済むし、逆に丁張がなくてもできちゃう利点がある。プラスアルファになるし、絶対いいと思う。

私も下手じゃないから、無くてもできるかもしれないけど、 iDigをつけることで更に効率がよくなる。私的には、iDig のメジャー機能がとても重宝してますよ!

(インタビュー動画抜粋)

最も安全なツールとして第2位受賞

2021年9月、ヨーロッパの林業展示会「Forexpo」においてフランス農業社会保障協会より最も安全なツールとして第2位を受賞しました。

iDigは職場の安全性と幸福の代名詞です。ショベルカーのオペレーターは キャビンから降りずに、正確に掘削できます。簡単で安全なiDigで効率よく仕 事をして利益を上げ、休息をとり、あなたの人生を充実させてください。

から2番目:ブリッジン社アルバート社長

【 お問合せ・デモのご依頼・ご相談はこちらへ 】

iDigはフランスBRIDGIN社が開発・製造 しているマシンガイダンスシステムです。 ヨーロッパ・北米・オーストラリアで普及。 アジア・日本各地でも生産性爆上げ中!

口木総代理点

グレートスター ジャパン株式会社

TEL: 045-228-8677 FAX: 045-228-8678 http://www.greatstarjapan.co.jp

IDIC.OFFICIAL iDigインスタ

スマホがいじれれば 操作できる簡単な2D マシンガイダンスがあるって本当?

ICT施工には興味があるけれど、

「マシンガイダンスの操作って難しい?」、「ICT施工ってどこから始めればいいの?」 そんなギモンをお持ちのみなさんに、ICT施工のポイントをわかりやすくお伝えします!

生産性爆上げマシンガイダンス ICT施工 応援ブック! みなさん、操作が簡単な 2Dがあるなら、 トライしてみる?

Let's 1-54 CTIMES!

あなたの目的にマッチしてるのは、2D or 3D?

「漠然と3Dを入れてみたけど、ほとんど使いこなせてない… *・** これ、残念ながら、よく聞く話です。 では ICT施工ってどこから始めたらいいのでしょうか?

	では、ICT施工ってどこから始めたらいいのでしょうか? ポイントは「あなたの目的」です!									
iDig 2D		or		iDig 3D						
安全・工期・品質・省人化など、 シンプルに生産性をアップさせたい!		目的	中長期的にICTに取組み、予算を投資できる! (3Dデータ作成が前提)							
低い	0	導入コスト	Δ	高い						
かからない	0	ランニング コスト	Δ	かかり続ける						
どんな現場でも精度±1cm	0	精度	\triangleleft	現場の環境によって左右される						
NETISのみ加点あり	Δ	加点	0	官公庁からの別途加点あり						
重機を移動後、0位置設定が必要	Δ	位置	0	GNSS受信機により把握可能						
不要	0	3D データ	Δ	3Dデータ・衛星情報・位置補正情報が必要 ※いずれが欠けても3D運用できない						
スマホがいじれれば 操作できる!	0	技術者	Δ	3Dデータ作成できる技術者が必要						
簡単な操作	0	オペレータ	Δ	3Dデータへの慣れが必要						
2D データ 導入費 ランニングニ 不要 · 2D導入費 ・ 不要 ・ 2D導入費 ・ 不要 ・ 2D導入費 ・ オントで生産性		イメージ		A DATA + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						

ちょうどいい!

現場がほとんど!

ハードルの低い2Dから慣れて、徐々に3Dへ!

アップが可能!

ICT施工=コスト・技術・人材のハードルが高すぎて、なかなか浸透してないのが現状。 実際は、2Dの導入だけで十分生産性を上げられる現場がほとんどなのです。 まずはシンプルな2Dでコストを抑え、簡単な操作から慣れて、生産性向上を実感しな がら、徐々に3Dにも取組んでいくのが、将来的にICT施工を実現しやすい流れです。

Let's 1-54 Cothers !

ICT施工=3D+2Dの混合使用がポイント!

Good! /

「ICT施工=3D施工=3D建機のみで施工 |と思ってませんか? 実はコストを抑えて、加点もゲットできるオススメの方法があるんです。 ポイントは「3D+2Dの混合使用 |!

混合使用とは

①3Dで切り始め・切り終わりに印付け。

②あとはその間を 2Dで掘削するだけ!

3D 建機が本当に必要なのは一部分 ♥

3D施工で必要なのは、3Dデータ上の切り始め切り終わり。3Dで目印をつけたら、 あとは2Dでコスト削減。混合使用は2Dが一般的なヨーロッパでもスタンダード なスタイルです。2Dなら高精度な掘削はもちろん、オフセットブーム・チルトロー テータ等にも対応してるので、状況に応じた作業が可能です!

混合使用 - 事例

\ ICT 導入協議会もオススメ! / 国土交通省 ウェブサイト

ICT導入協議会第9回参考資料-1 ICT活用における課題と対応事例

事例 D 抜粋

※オフセット機能

を活用

光物怀女			1	[XXI:	未】					
施工数量	路体·路床盛土: 1,500m³ 法面整形工: 1,200㎡ 排水構造物工: 270m				産性向上より、カ 易型2Dマシンフ 返却					ICT建機を
主な工種	道路改良				の出来形対象範囲 外した。	曲を	と事前に協議し	ン、非効率と7	なる可能性のる	ある官埋手法
場面	きょうあい	問題及び	「課	題				対	策	
現場環境	・狭隘な現	場のため、ブ が懸念された		ーザつ	での施工が難		・ICTバック で施工を			

・構造物工の施工による建機の遊休時間が発生 し、建機の拘束期間が長くなり、コスト増と なることが懸念される。

3Dの目印をもとに2Dで施工することで 3Dの早期返却が可能となった。

工種条件 排水構造物工 ※本現場は排水構造物施工有り

